MAESPA: Development of a soilplant-atmosphere model

Remko Duursma, Dec. 12 2008 UWS

Process-based models of canopy function

- Canopy-level gas exchange (H₂O,CO₂) notoriously hard to measure
 - before whole-tree chambers, eddy flux, no real way to measure
- Use of models to scale up leaf-level fluxes (which are 'easy' to measure) to the canopy goes back to C.T. de Wit's "Photosynthesis of leaf canopies", 1965.

Process-based models of canopy function

- Why complex over-parameterized models?
 - Similar predictive power can be reached with simple models
- Complex models very useful research tools to integrate detailed knowledge, test hypotheses, study system behaviour
 - "what-if" analyses
 - do measurements add up
 - scaling up (spatially and temporally)
 - exploring different process hypotheses

Process-based models of canopy function

- Complex models should be flexible
 - Not view it as a black box where all processes are represented in the 'best possible way'
 - Our understanding is incomplete, models should have options to test different mechanisms (submodels)

Outline

Development of MAESPA

- Details, details
- Implementation

How and why do we use models like this?

MAESPA Components

Scaling of leaf gas exchange (CO₂, H₂O) to the tree canopy (MAESTRA)

Radiation extinction and leaf physiology models

- Respiration (MAESTRA) (leaf + woody biomass)
- Stand water balance (SPA)
 - Rainfall interception, infiltration and drainage, soil evaporation, water uptake
- Soil energy balance (SPA)
 - Used in estimating soil evaporation, not mandatory
- Not : growth, allocation (MATE), N cycle (G'DAY), snow/ice routines (SPA).

A Brief History of MAESTRA

- Norman & Jarvis (1974,1975): developed models to predict penetration of radiation in canopies, and effect of canopy structure
- Grace (1987) : important development of the radiation model, with influence from Norman and Welles.
- Wang and Jarvis (1990) : publishes MAESTRO as result of his Ph.D. research with Paul Jarvis
- Belinda Medlyn: re-organized the original Fortran code, added many options, and renamed it MAESTRA

50+ publications using MAESTRA

A Briefer History of SPA

- Soil-Plant-Atmosphere model developed by Mat Williams (Williams et al. 1996, 2001a, 2001b)
- Horizontally homogenous canopy (as is usual), but a detailed coupled water and energy balance

SPA also written in Fortran, mechanistic detail good match to MAESTRA

MAESTRA

Radiation penetration

- Shading within trees, and between trees
- At each grid point, estimation of PAR, NIR, long-wave radiation
- Data needed:
 - leaf angle distribution, leaf reflectance, clumping of foliage (conifer shoots)
 - crown size (length, width), shape
 (ellipsoid, paraboloid, cone, cylinder, box)
 - position of neighbour trees
 - latitude, incident radiation
 - vertical and horizontal distribution of foliage in crowns (or assume evenly filled)

Stomatal conductance models (1)

- $g_s = f(PAR, VPD, CO_2, A)$
- Several options:
 - Jarvis model
 - Ball-Berry
 - Ball-Berry-Leuning
- ... other models easily added
 - optimal stomatal control

Data needed: leaf-level gs, A, at varying PAR, VPD (,CO₂)

Leaf photosynthesis model

Farquhar et al. (1980) model of photosynthesis

Temperature dependence of V_{cmax} , J_{max} , etc.

- Quantum yield of electron transport
 - apparent quantum yield of CO₂ uptake equally as useful for parameterizing

Water balance: components borrowed from SPA

Soil evaporation

Choudhury and Monteith (1988) one-layer model

Where

$$\mathsf{LE}_{\mathsf{soil}} = \alpha \frac{\mathsf{e}_{\mathsf{a}} - \mathsf{e}_{\mathsf{s}}}{\mathsf{r}_{\mathsf{soil}} + \mathsf{r}_{\mathsf{bl}}}$$

- α combination of (near-) constants (J m⁻³ Pa⁻¹)
- e_a air vapour pressure (Pa)
- e_s soil pore vapour pressure (= function of \mathbf{T}_{soil} and Ψ_{soil})
- r_{soil} soil resistance (= function of dry layer thickness)
- r_{bl} boundary layer resistance (s m⁻¹), function of windspeed, aerodynamic properties of canopy

Soil evaporation (2)

Constant weather, no rain: initial high rates of evaporation decline as dry layer increases

Canopy throughfall

- The classic Rutter et al. (1975) model of canopy throughfall, interception, drainage and evaporation
- Four parameters: could be derived from measurements, but often set to Rutter's defaults
- Rutter, A.J., A.J. Morton and P.C. Robins 1975. A predictive model of rainfall interception in forests. III. Generalization of the model and comparison with observations in some coniferous and hardwood stands. Journal of Applied Ecology. 12:367-380.

Canopy throughfall (2)

Drainage and infiltration

- Gravitational drainage is calculated from hydraulic conductivity
- Integration of the Richards' equation
 - Very standard method in soil hydrology
- No macropore flow: could be important
- Infiltration of rainfall: SPA assumed complete infiltration in top layer
- MAESPA includes option for immediate infiltration of rainfall into deeper layers (macropore idea, based on BROOK90 model)

Drainage (2)

Soil water potential and hydraulic conductivity

Campbell's (1974) coupled retention and conductivity

Limits on leaf transpiration: one option

Bulk soil	$\stackrel{\text{MW}}{\rightarrow}$	Root surface	₩	Leaf	$\stackrel{WW}{\rightarrow}$	Atmosphere
-----------	-------------------------------------	--------------	----------	------	------------------------------	------------

- Ohm's analogy to water flow, one-dimensional
- Assumption of a critical minimum leaf water potential
- Maximum transpiration rate is then: $E_{max} = k_{tot} \times (\Psi_{soil} - \Psi_{min})$
- where \mathbf{k}_{tot} conductance from soil to leaf, Ψ_{min} minimum leaf water potential, Ψ_{soil} a weighted soil water potential (by the layers)
- If calculated E from the stomatal conductance model exceeds E_{max} , E is set to E_{max} (and g_s and A recalculated)

Soil to root surface conductance

Gardner's (1960) single root model

$$\mathbf{k}_{\mathsf{soil}} = \frac{\mathsf{RLI}}{\mathsf{LAI}} \times \mathbf{C}_{\mathsf{R}} \times \mathbf{K}_{\mathsf{soil}}(\Psi_{\mathsf{soil}})$$

where: \mathbf{k}_{soil} leaf-specific soil hydraulic conductance (mol m⁻² s⁻¹ MPa⁻¹), **RLI** root length index (m m⁻²), **LAI** leaf area index, \mathbf{K}_{soil} hydr. conductivity, $\mathbf{C}_{\mathbf{R}}$ a root index function

Soil water uptake (3)

- Fraction uptake in each of the soil layers is determined from soil conductance in each layer
 - This is a SPA hypothesis, and should be tested more! Other alternatives may exist as well
- Data needed for the soil water uptake module:
 - Plant hydraulic conductance (leaf-specific) (from sapflux and drop in leaf water potential).
 - Minimum leaf water potential (MPa)
 - Soil water retention data (or soil texture at the least), saturated hydraulic conductivity
 - Rooting depth, rooting density, vertical profile

Energy balance

Energy balance (2)

Soil surface temperature (T_s) is calculated from closing the energy balance equation:

$\mathbf{R}_{\mathrm{n}} + \mathbf{Q}_{\mathrm{e}} + \mathbf{Q}_{\mathrm{h}} + \mathbf{Q}_{\mathrm{c}} = 0$

Where R_n is net radiation, Q_e latent heat loss (soil evaporation), Q_h soil heat flux, Q_c sensible heat loss, all in W m⁻².

- All heat fluxes depend on T_s, so it is possible to solve the energy balance equation for T_s
- Soil evaporation is then calculated from this surface temperature

Soil heat flux and temperature profile

- Flux of heat in the soil depends on soil thermal conductivity
 - Function of water content, porosity, organic matter content (Lu et al. 2007)
- Litter layer is 100% organic matter, has very low conductivity
- Given the thermal conductivity for each layer, and their temperatures, we can calculate the flux of heat between layers
- This gives the soil temperature profile
- Solution of the so-called Fourier heat transport equation, standard method
- Lu, S., T. Ren, Y. Gong and R. Horton 2007. An Improved Model for Predicting Soil Thermal Conductivity from Water Content at Room Temperature. Soil Sci Soc Am J. 71:8-14.

Soil temperature profile example

Implementation and user interface

- MAESPA is written in Fortran (as are MAESTRA, SPA)
- SPA code heavily re-organized, style and functionality matches MAESTRA
- Input text files, input error checking
 - One file for water balance parameters (watpars.dat)
- Output files:
 - (Half-)Hourly water balance file (watbal.dat)
 - Soil temperature profile (hourly) (watsoilt.dat)
 - Relative water uptake profile (hourly) (watupt.dat)
 - Water content by layer (hourly) (watlay.dat)

Example output (watbal.dat)

Tumbarumba flux site, *Eucalyptus delegatensis*, $LAI = 1.5 \text{ m}^2 \text{ m}^{-2}$

Batch Utility

- A collection of functions written in R for multiple simulations of MAESPA/MAESTRA
- Can be used for other models that use namelists in input files (Fortran)
- Available as an R package
- Also available a number of functions that graph MAESPA output

HFE

- Whole-tree fluxes of CO₂ and H₂O ideal for model testing
- Very preliminary runs: no competitive shading, stomatal conductance model not properly calibrated.
- One Saturday's data in April 2008 total leaf areas estimated in April

Potential model applications at the HFE

- Where is the water coming from?
 - Do fluxes of water add up?
 - Depth of water uptake?
 - Can we predict effects of drought treatment?
- CO₂ effect: contributions of LA, LUE, g_s, etc.
- Testing mechanisms: poor understanding of drought
- Are leaf-level measurements consistent with whole-tree fluxes?
- Impacts of reduced g_s on soil water balance, sensitivity to drought : do model predictions match tree fluxes?

Other applications

- Testing at other sites (eddy-flux, sap-flux sites)
- Development of response surfaces to aid development and parameterization of simple models (e.g. MATE, MATEY)
 - Scaling up from the HFE to...
- Sensitivity analyses:
 - important parameters?
 - What-if? (e.g. "What if there would be no downregulation?")
- Strength of MAESTRA: 3D canopy structure
 - Effect on energy and water balance?
 - Do simple models need to be adjusted?